\(\int \frac {(g \cos (e+f x))^{3/2}}{(a+a \sin (e+f x))^{3/2} \sqrt {c-c \sin (e+f x)}} \, dx\) [138]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [C] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F(-1)]
   Mupad [F(-1)]

Optimal result

Integrand size = 42, antiderivative size = 121 \[ \int \frac {(g \cos (e+f x))^{3/2}}{(a+a \sin (e+f x))^{3/2} \sqrt {c-c \sin (e+f x)}} \, dx=-\frac {2 (g \cos (e+f x))^{5/2}}{f g (a+a \sin (e+f x))^{3/2} \sqrt {c-c \sin (e+f x)}}-\frac {2 g \sqrt {\cos (e+f x)} \sqrt {g \cos (e+f x)} E\left (\left .\frac {1}{2} (e+f x)\right |2\right )}{a f \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}} \]

[Out]

-2*(g*cos(f*x+e))^(5/2)/f/g/(a+a*sin(f*x+e))^(3/2)/(c-c*sin(f*x+e))^(1/2)-2*g*(cos(1/2*f*x+1/2*e)^2)^(1/2)/cos
(1/2*f*x+1/2*e)*EllipticE(sin(1/2*f*x+1/2*e),2^(1/2))*cos(f*x+e)^(1/2)*(g*cos(f*x+e))^(1/2)/a/f/(a+a*sin(f*x+e
))^(1/2)/(c-c*sin(f*x+e))^(1/2)

Rubi [A] (verified)

Time = 0.42 (sec) , antiderivative size = 121, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.095, Rules used = {2931, 2921, 2721, 2719} \[ \int \frac {(g \cos (e+f x))^{3/2}}{(a+a \sin (e+f x))^{3/2} \sqrt {c-c \sin (e+f x)}} \, dx=-\frac {2 (g \cos (e+f x))^{5/2}}{f g (a \sin (e+f x)+a)^{3/2} \sqrt {c-c \sin (e+f x)}}-\frac {2 g \sqrt {\cos (e+f x)} E\left (\left .\frac {1}{2} (e+f x)\right |2\right ) \sqrt {g \cos (e+f x)}}{a f \sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}} \]

[In]

Int[(g*Cos[e + f*x])^(3/2)/((a + a*Sin[e + f*x])^(3/2)*Sqrt[c - c*Sin[e + f*x]]),x]

[Out]

(-2*(g*Cos[e + f*x])^(5/2))/(f*g*(a + a*Sin[e + f*x])^(3/2)*Sqrt[c - c*Sin[e + f*x]]) - (2*g*Sqrt[Cos[e + f*x]
]*Sqrt[g*Cos[e + f*x]]*EllipticE[(e + f*x)/2, 2])/(a*f*Sqrt[a + a*Sin[e + f*x]]*Sqrt[c - c*Sin[e + f*x]])

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2721

Int[((b_)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Dist[(b*Sin[c + d*x])^n/Sin[c + d*x]^n, Int[Sin[c + d*x]
^n, x], x] /; FreeQ[{b, c, d}, x] && LtQ[-1, n, 1] && IntegerQ[2*n]

Rule 2921

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_) + (d_.)*sin[(e_
.) + (f_.)*(x_)]]), x_Symbol] :> Dist[g*(Cos[e + f*x]/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]])), In
t[(g*Cos[e + f*x])^(p - 1), x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2
, 0]

Rule 2931

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) +
 (f_.)*(x_)])^(n_), x_Symbol] :> Simp[b*(g*Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^
n/(a*f*g*(2*m + p + 1))), x] + Dist[(m + n + p + 1)/(a*(2*m + p + 1)), Int[(g*Cos[e + f*x])^p*(a + b*Sin[e + f
*x])^(m + 1)*(c + d*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, n, p}, x] && EqQ[b*c + a*d, 0] && E
qQ[a^2 - b^2, 0] && LtQ[m, -1] && NeQ[2*m + p + 1, 0] &&  !LtQ[m, n, -1] && IntegersQ[2*m, 2*n, 2*p]

Rubi steps \begin{align*} \text {integral}& = -\frac {2 (g \cos (e+f x))^{5/2}}{f g (a+a \sin (e+f x))^{3/2} \sqrt {c-c \sin (e+f x)}}-\frac {\int \frac {(g \cos (e+f x))^{3/2}}{\sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}} \, dx}{a} \\ & = -\frac {2 (g \cos (e+f x))^{5/2}}{f g (a+a \sin (e+f x))^{3/2} \sqrt {c-c \sin (e+f x)}}-\frac {(g \cos (e+f x)) \int \sqrt {g \cos (e+f x)} \, dx}{a \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}} \\ & = -\frac {2 (g \cos (e+f x))^{5/2}}{f g (a+a \sin (e+f x))^{3/2} \sqrt {c-c \sin (e+f x)}}-\frac {\left (g \sqrt {\cos (e+f x)} \sqrt {g \cos (e+f x)}\right ) \int \sqrt {\cos (e+f x)} \, dx}{a \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}} \\ & = -\frac {2 (g \cos (e+f x))^{5/2}}{f g (a+a \sin (e+f x))^{3/2} \sqrt {c-c \sin (e+f x)}}-\frac {2 g \sqrt {\cos (e+f x)} \sqrt {g \cos (e+f x)} E\left (\left .\frac {1}{2} (e+f x)\right |2\right )}{a f \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 3.76 (sec) , antiderivative size = 170, normalized size of antiderivative = 1.40 \[ \int \frac {(g \cos (e+f x))^{3/2}}{(a+a \sin (e+f x))^{3/2} \sqrt {c-c \sin (e+f x)}} \, dx=-\frac {2 (g \cos (e+f x))^{3/2} \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right ) \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )^2 \left (\sqrt {\cos (e+f x)} \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )+E\left (\left .\frac {1}{2} (e+f x)\right |2\right ) \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )\right )}{f \cos ^{\frac {3}{2}}(e+f x) (a (1+\sin (e+f x)))^{3/2} \sqrt {c-c \sin (e+f x)}} \]

[In]

Integrate[(g*Cos[e + f*x])^(3/2)/((a + a*Sin[e + f*x])^(3/2)*Sqrt[c - c*Sin[e + f*x]]),x]

[Out]

(-2*(g*Cos[e + f*x])^(3/2)*(Cos[(e + f*x)/2] - Sin[(e + f*x)/2])*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2])^2*(Sqrt
[Cos[e + f*x]]*(Cos[(e + f*x)/2] - Sin[(e + f*x)/2]) + EllipticE[(e + f*x)/2, 2]*(Cos[(e + f*x)/2] + Sin[(e +
f*x)/2])))/(f*Cos[e + f*x]^(3/2)*(a*(1 + Sin[e + f*x]))^(3/2)*Sqrt[c - c*Sin[e + f*x]])

Maple [C] (verified)

Result contains complex when optimal does not.

Time = 0.76 (sec) , antiderivative size = 798, normalized size of antiderivative = 6.60

method result size
default \(\text {Expression too large to display}\) \(798\)
risch \(\text {Expression too large to display}\) \(1145\)

[In]

int((g*cos(f*x+e))^(3/2)/(a+a*sin(f*x+e))^(3/2)/(c-c*sin(f*x+e))^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/2/f*(4*I*cos(f*x+e)^2*(-cos(f*x+e)/(1+cos(f*x+e))^2)^(1/2)*(1/(1+cos(f*x+e)))^(1/2)*(cos(f*x+e)/(1+cos(f*x+e
)))^(1/2)*EllipticE(I*(csc(f*x+e)-cot(f*x+e)),I)-4*I*cos(f*x+e)^2*(-cos(f*x+e)/(1+cos(f*x+e))^2)^(1/2)*(1/(1+c
os(f*x+e)))^(1/2)*(cos(f*x+e)/(1+cos(f*x+e)))^(1/2)*EllipticF(I*(csc(f*x+e)-cot(f*x+e)),I)+8*I*cos(f*x+e)*(-co
s(f*x+e)/(1+cos(f*x+e))^2)^(1/2)*(1/(1+cos(f*x+e)))^(1/2)*(cos(f*x+e)/(1+cos(f*x+e)))^(1/2)*EllipticE(I*(csc(f
*x+e)-cot(f*x+e)),I)-8*I*cos(f*x+e)*(-cos(f*x+e)/(1+cos(f*x+e))^2)^(1/2)*(1/(1+cos(f*x+e)))^(1/2)*(cos(f*x+e)/
(1+cos(f*x+e)))^(1/2)*EllipticF(I*(csc(f*x+e)-cot(f*x+e)),I)+4*I*(-cos(f*x+e)/(1+cos(f*x+e))^2)^(1/2)*(1/(1+co
s(f*x+e)))^(1/2)*(cos(f*x+e)/(1+cos(f*x+e)))^(1/2)*EllipticE(I*(csc(f*x+e)-cot(f*x+e)),I)-4*I*(-cos(f*x+e)/(1+
cos(f*x+e))^2)^(1/2)*(1/(1+cos(f*x+e)))^(1/2)*(cos(f*x+e)/(1+cos(f*x+e)))^(1/2)*EllipticF(I*(csc(f*x+e)-cot(f*
x+e)),I)-4*(-cos(f*x+e)/(1+cos(f*x+e))^2)^(1/2)*sin(f*x+e)+4*(-cos(f*x+e)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)+c
os(f*x+e)*ln(2*(2*(-cos(f*x+e)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)+2*(-cos(f*x+e)/(1+cos(f*x+e))^2)^(1/2)-cos(f
*x+e)+1)/(1+cos(f*x+e)))-cos(f*x+e)*ln((2*(-cos(f*x+e)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)+2*(-cos(f*x+e)/(1+co
s(f*x+e))^2)^(1/2)-cos(f*x+e)+1)/(1+cos(f*x+e)))+4*(-cos(f*x+e)/(1+cos(f*x+e))^2)^(1/2))*cos(f*x+e)*(g*cos(f*x
+e))^(1/2)*g/(-c*(sin(f*x+e)-1))^(1/2)/(a*(1+sin(f*x+e)))^(1/2)/(-cos(f*x+e)/(1+cos(f*x+e))^2)^(3/2)/(1+cos(f*
x+e))^3/a

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.11 (sec) , antiderivative size = 158, normalized size of antiderivative = 1.31 \[ \int \frac {(g \cos (e+f x))^{3/2}}{(a+a \sin (e+f x))^{3/2} \sqrt {c-c \sin (e+f x)}} \, dx=-\frac {2 \, \sqrt {g \cos \left (f x + e\right )} \sqrt {a \sin \left (f x + e\right ) + a} \sqrt {-c \sin \left (f x + e\right ) + c} g - \sqrt {a c g} {\left (i \, \sqrt {2} g \sin \left (f x + e\right ) + i \, \sqrt {2} g\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (f x + e\right ) + i \, \sin \left (f x + e\right )\right )\right ) - \sqrt {a c g} {\left (-i \, \sqrt {2} g \sin \left (f x + e\right ) - i \, \sqrt {2} g\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (f x + e\right ) - i \, \sin \left (f x + e\right )\right )\right )}{a^{2} c f \sin \left (f x + e\right ) + a^{2} c f} \]

[In]

integrate((g*cos(f*x+e))^(3/2)/(a+a*sin(f*x+e))^(3/2)/(c-c*sin(f*x+e))^(1/2),x, algorithm="fricas")

[Out]

-(2*sqrt(g*cos(f*x + e))*sqrt(a*sin(f*x + e) + a)*sqrt(-c*sin(f*x + e) + c)*g - sqrt(a*c*g)*(I*sqrt(2)*g*sin(f
*x + e) + I*sqrt(2)*g)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(f*x + e) + I*sin(f*x + e))) - sqr
t(a*c*g)*(-I*sqrt(2)*g*sin(f*x + e) - I*sqrt(2)*g)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(f*x +
 e) - I*sin(f*x + e))))/(a^2*c*f*sin(f*x + e) + a^2*c*f)

Sympy [F(-1)]

Timed out. \[ \int \frac {(g \cos (e+f x))^{3/2}}{(a+a \sin (e+f x))^{3/2} \sqrt {c-c \sin (e+f x)}} \, dx=\text {Timed out} \]

[In]

integrate((g*cos(f*x+e))**(3/2)/(a+a*sin(f*x+e))**(3/2)/(c-c*sin(f*x+e))**(1/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {(g \cos (e+f x))^{3/2}}{(a+a \sin (e+f x))^{3/2} \sqrt {c-c \sin (e+f x)}} \, dx=\int { \frac {\left (g \cos \left (f x + e\right )\right )^{\frac {3}{2}}}{{\left (a \sin \left (f x + e\right ) + a\right )}^{\frac {3}{2}} \sqrt {-c \sin \left (f x + e\right ) + c}} \,d x } \]

[In]

integrate((g*cos(f*x+e))^(3/2)/(a+a*sin(f*x+e))^(3/2)/(c-c*sin(f*x+e))^(1/2),x, algorithm="maxima")

[Out]

integrate((g*cos(f*x + e))^(3/2)/((a*sin(f*x + e) + a)^(3/2)*sqrt(-c*sin(f*x + e) + c)), x)

Giac [F(-1)]

Timed out. \[ \int \frac {(g \cos (e+f x))^{3/2}}{(a+a \sin (e+f x))^{3/2} \sqrt {c-c \sin (e+f x)}} \, dx=\text {Timed out} \]

[In]

integrate((g*cos(f*x+e))^(3/2)/(a+a*sin(f*x+e))^(3/2)/(c-c*sin(f*x+e))^(1/2),x, algorithm="giac")

[Out]

Timed out

Mupad [F(-1)]

Timed out. \[ \int \frac {(g \cos (e+f x))^{3/2}}{(a+a \sin (e+f x))^{3/2} \sqrt {c-c \sin (e+f x)}} \, dx=\int \frac {{\left (g\,\cos \left (e+f\,x\right )\right )}^{3/2}}{{\left (a+a\,\sin \left (e+f\,x\right )\right )}^{3/2}\,\sqrt {c-c\,\sin \left (e+f\,x\right )}} \,d x \]

[In]

int((g*cos(e + f*x))^(3/2)/((a + a*sin(e + f*x))^(3/2)*(c - c*sin(e + f*x))^(1/2)),x)

[Out]

int((g*cos(e + f*x))^(3/2)/((a + a*sin(e + f*x))^(3/2)*(c - c*sin(e + f*x))^(1/2)), x)